Inverting the hourglass: quantitative evidence against the phylotypic stage in vertebrate development.
نویسندگان
چکیده
The concept of a phylotypic stage, when all vertebrate embryos show low phenotypic diversity, is an important cornerstone underlying modern developmental biology. Many theories involving patterns of development, developmental modules, mechanisms of development including developmental integration, and the action of natural selection on embryological stages have been proposed with reference to the phylotypic stage. However, the phylotypic stage has never been precisely defined, or conclusively supported or disproved by comparative quantitative data. We tested the predictions of the 'developmental hourglass' definition of the phylotypic stage quantitatively by looking at the pattern of developmental-timing variation across vertebrates as a whole and within mammals. For both datasets, the results using two different metrics were counter to the predictions of the definition: phenotypic variation between species was highest in the middle of the developmental sequence. This surprising degree of developmental character independence argues against the existence of a phylotypic stage in vertebrates. Instead, we hypothesize that numerous tightly delimited developmental modules exist during the mid-embryonic period. Further, the high level of timing changes (heterochrony) between these modules may be an important evolutionary mechanism giving rise to the diversity of vertebrates. The onus is now clearly on proponents of the phylotypic stage to present both a clear definition of it and quantitative data supporting its existence.
منابع مشابه
In search of the vertebrate phylotypic stage: a molecular examination of the developmental hourglass model and von Baer's third law.
In 1828, Karl von Baer proposed a set of four evolutionary "laws" pertaining to embryological development. According to von Baer's third law, young embryos from different species are relatively undifferentiated and resemble one another but as development proceeds, distinguishing features of the species begin to appear and embryos of different species progressively diverge from one another. An e...
متن کاملDev107318 4649..4655
The hourglass model of embryonic evolution predicts an hourglasslike divergence during animal embryogenesis – with embryos being more divergent at the earliest and latest stages but conserved during a mid-embryonic (phylotypic) period that serves as a source of the basic body plan for animals within a phylum. Morphological observations have suggested hourglass-like divergence in various vertebr...
متن کاملAn explanatory evo-devo model for the developmental hourglass
The "developmental hourglass'' describes a pattern of increasing morphological divergence towards earlier and later embryonic development, separated by a period of significant conservation across distant species (the "phylotypic stage''). Recent studies have found evidence in support of the hourglass effect at the genomic level. For instance, the phylotypic stage expresses the oldest and most c...
متن کاملComparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period.
The complex relationship between ontogeny and phylogeny has been the subject of attention and controversy since von Baer's formulations in the 19th century. The classic concept that embryogenesis progresses from clade general features to species-specific characters has often been revisited. It has become accepted that embryos from a clade show maximum morphological similarity at the so-called p...
متن کاملQuantitative tests of general models for the evolution of development.
Comparative developmental biologists have proposed models to describe patterns of conserved features in vertebrate ontogeny. The hourglass model suggests evolutionary change is most difficult at an intermediate "phylotypic" stage, the adaptive penetrance model suggests change is easiest at an intermediate stage, and the early conservation model suggests change is easier later in ontogeny. Altho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Biological sciences
دوره 270 1513 شماره
صفحات -
تاریخ انتشار 2003